Friday, 30 January 2015

Gyroscopic Effect (Gyroscope) - Practical View -1080p HD Video -Mechanical Engineering





Info:

A gyroscope (from Greek γῦρος gûros, "circle" and is a device for measuring or maintaining orientation, based on the principles of angular momentum.[1] Mechanical gyroscopes typically comprise a spinning wheel or disc in which the axle is free to assume any orientation. Although the orientation of the spin axis changes in response to an external torque, the amount of change and the direction of the change is less and in a different direction than it would be if the disk were not spinning. When mounted in a gimbal (which minimizes external torque), the orientation of the spin axis remains nearly fixed, regardless of the mounting platform's motion.
Gyroscopes based on other operating principles also exist, such as the electronic, microchip-packaged MEMS gyroscope devices found in consumer electronic devices, solid-state ring lasers, fibre optic gyroscopes, and the extremely sensitive quantum gyroscope.
Applications of gyroscopes include inertial navigation systems where magnetic compasses would not work (as in the Hubble telescope) or would not be precise enough (as in intercontinental ballistic missiles), or for the stabilization of flying vehicles like radio-controlled helicopters or unmanned aerial vehicles. Due to their precision, gyroscopes are also used in gyrotheodolites to maintain direction in tunnel mining.

No comments:

Post a Comment

Your thoughts please...